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Abstract: Morphing aircrafstructuresisuallyintroduce greater compliance into aerodynamic sections,
and therefore will affecthe aeroelasticityith the potentialrisk of increasedlutter. A low-fidelity
modelof an active camber morphing wing andagsoelastic model are developearder to investigate

the potentiatritical speedy exploiting its chorewisedimension andlexibility . Such a model may be
used for conceptual design, whére fidelity models are used to explore and optimise a wide range of
configurations.The morphing cambeconcept is implementedsinga continuous representation of a
two-segment structure with a rigid segment and a defornmatsteThe aeroelastimodel isdeveloped
based orboth steady and unsteadgrodynamic models, shat different parameters can be easily
modified to examine changes in the flutter solutidigparticular interest ardne ratio of the morphing
segmentength to the chord, aritk relative stiffness, asish morphing cambers potential operated
using thedeformablepart as a flapBy comparing the results of the quastady and unsteady
aerodynamic modsy it is shown thathe quasisteady aerodynamic model givesnareconsevative
prediction ofthe flutter speed In addition, responses in phase spaae simulated to show the
fundamental aeroelastioehaviourof the morphing cambemwing. It is also shown thathe active
compliant segmerdan beusedto stabilisethe morphingaircraft by usingeedbaclcontrol This paper
provides a systerdevel insight through mathematical modelling, parameter analysis and feedback

control intodynamicsapplicatiors of morphing camber.
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1.l ntroducti on

Advances in the development of smart actuators and compliant structuretethaeewidespread
interest inmorphing wingq1]. The aircraft system can therefore integraterphing conceptto allow

shape changes of the structure, and tmlespt its aerodynamic properties to suit changmsgsion
requirementsMorphing aircraficoncepts are showing the potentiasignificantly reduce the masad
energy consumptigrand improve flight performanceompared to traditional aircraft structurasd
hencethey arereceiving widespread interest across the aerospace infilistty Traditional actuators,

such as electromechanis&lrvos can be used as linear and rotatyiators, combined with mechanisms

to provide a powerful tool for morphin@]. Smart materials have been used as actuators to control
wing panelg10,11} spanwise deflectiofil2] and trailingedge flapd13,14] Many morphing wing
structuresare designed as compliant mechanisms to ghedesired deformatiofi5i 21]. A morphing
leadingedge model was digmedasa monolithic aluminium internal compliant mechanism to provide
droopnose morphing18]. A compliant spar concept was presented and modelled to change the
wingspan, which can enhance the operational performance and provide the roll coatrotrfmenned
aerial vehicle (UAV)[19]. However,a potential consequence wing morphingis that the wing
structures become more flexibbnd hencéhe dynamigropertesof the wing and aerodynamic lead

are affected Therefore, the aeroelastic problenfsmorphing wingsas an interaction between the
configurationvarying aerodynamics andhe morphing structue, require investigationwhen
dramatically changing their configurations during flight meet this challenge, effective theoretical
formulatiors and computational methods are developed in this paper to model the coupled structural

and aerodynamic behaviour of an active camber niagphing.

Significantresearch oithe aeroelastity of conventionalwings alreadyexists but recently therbas
beenincreasinginterestspecifically in morphing wings.A reaktime hybrid aeroelastic simulation
platform for flexible wingsandan efficient scheme to obtain the aerodynamic sensitivities for highly
flexible aircrafthave been studid@2,23] A folding wing structure has been modelled theoretically
using linear plate #ory and its aeroelastic stability was studied by using a-tlireensional time
domain vortex lattice aerodynamic modiad]. A further continuum model with exact solutions was
developed to show the fundamental physics of foldimgg configurationg25,26] Thecorresponding
experimentsvere designedand the wind tunnekest results wereompared with th@redictions of a
computational model for three folding wing configuratiohise d/namial characteristics of #iexible
membrane winghave beeninvestigated and validatetly using computational fluiddynamics
simulatiors and experiments in a wind tunij2l’]. Moreover, avide range of researchiheaeroelastic
analysisof 2D morphingaerofoilhavebeenvalidated using analytical aerodynamic modaid CFD
technigueswhich is extremely reliable and enables hfglelity structural analysisThe dynamic

properties of mostompliant structurelsavebeen investigated in axial flow, such as a cantileverate pl
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[28]. Similarto the cantilevered plata@nterconnected beams in a fluid fldhwave beertudied to show

thatthe hinge position caaffectthe critical flutter speef9]. A series offlexible aerofoit have been
investigated by considerinhemas a beam structure in axialfloR.ay | ei ghds beuseth equat
to model a flexible aerofqilwhich describeshea er of oi | 6 s ¢ h[80]. dheieffeet ofd y n a mi
chordwise flexibility of a compliant aerofoil wasinvestigatednumerically to showthe dynamial
stability[31,32] Anactuatedwo-dimensionamembraneerofoilhas been investigatedperimentally

and numerically anduggests that membrane flexibilityight decrease the drag and delay the stall.

[33], a 2D aerofoil section fitted with a fldike deformable trailinggedge actuatowasinvestigated to

determine flutter and divergence instability limihe inplane motion and deformation of the 2D
structureweredescribed by three degrees of freedoamelyheave translatiomitch rotation and flap

deflection and the results show that the undeflected flap aerofoil section has a higher stability limit than

the rigid aerofoil.

A wide range of researchtonthe aeroelastic characteristics of 2D aerafbids beermonductedising

both analytical aerodynamic modealsdCFD techniques, whicareextremely reliable and enable high
fidelity structural analysiddigh-fidelity analysisis limited to realistic and detailed modé¢hat implies

high costs. The primary aim of this paj®to investigate a quick and easy way to access the theoretical
formulation of an active camber morphing wing and its aeroelastic mhgebmisingactive camber
morphing concepis consideredknown as the Fish Bone Active Camber (FishBAB)], which uses

a biologically inspired internal bending beam and elastomeric matrix compo#ieskin surface, as
shown in Fig. 1The benefit of active camber is that it is capable of large camber changes and morph
the camber of an aerofoil smoothly and tomously, sathat thedeformablepart of theaerofoil will
function asa flap. Hence,ensuringthe stability ofthe deformablepart s essentiain suchmorphing
camberapplicationsIn addition,morphingcamber has been studiby strategically locatingegative
stiffness devices to tailor the required deployment foeces moments for passienergy balancing
[35]. Thereforetheratio of the morphing segmeleingth to the chord anglative stiffnessailored by
negative stiffness of theeformablepart are thenod important to check and teisttuitively. In other
words,the active compliant segment can be used to stabilise the morphing aircraft while etiguring
compliant segmeris alsostalde. Furthermore most of the works on flexible aerofeliave considered

the whole aerofoil as a compliant structufg0i 32,36 38] or attached a compliant structuie the
trailing edgeas an additional paf89,40], which cannotccuratelyrepresent the aeroelastmodel of
FishBAC. For this study, the active camber morphing wing is considaseallow fidelity model with

two chordwise segments; a nororphing Dspar towardthe leading edge and a biologically inspired
compliant structure towasdhe trailing edgeThe assemble@erofoilis then used to create a dynamic
model of that can be used to provide insight into the system level dynamics, including the prediction of

flutter. The model may also be used to design and assess feedback abmnodsto improve the



dynamic performance. This analysdifferent fromthosepreviousy reported, since few pers in the

literature considedynamic models of morphing concepts

Thelow fidelity modelisfirstly considered as a rigiiexible structuea nd Hami | t onds pri nc
to develop the dynamic model based on flexible rhdtly dynamics theorj4li 44]. A traditional
linear structuraimodelis developed byneglecing the structual nonlinearity and using orthogonal

structuralmode shapeas a basifor thedeformationof the flexible part.

Figure 1. Active camber morphing wing. (a) Morphing wing in the undeforstate. (b) Morphing wing in the
deformed stat@5].

Theaeralastc model based on the active camber morphing witltgisinvestigated byagaindividing
theaerofoilinto arigid segment and morphing segment, respectivelywo linear aerodynamic models
are consideredquaststeady and fully unsteadyhe aerodynamic load provided by the rigid segment
is considered as a transitional 2 degoééreedom(DOF) stall model and the aerodynamic load
provided by the morphing segment is simulated as a compliant structuraxial flow. Moreover,by
consideing thevarying unsteady aerodynamic loataracteristics with frequencg, model reduction
methodbased on singular value decomposititais been used t@naly® the unsteady aeroelastic
problem[46].

Based on the theoretical formulation atscaeroelastic model, the eigenvalue evolutidghémanalysed

to show unstable behaviour tife morphing wing with increasinfgee stream velocityTwo known
cases frontheliterature [34,37hre usedor validation aclassic 220OF model andapanel modelThen,
sincethe goal ofthe FishBAC concepis to change the flight condition by operating the compliant
segment, the compliant segment sheaddble anore stablesystemthanarigid airfoil, since control
may be provided by the FishBA&cing a flap. Therefore,the relative length and stiffnessof the
morphing segment ithen variedto changethe flutter solutionswhich can help tainderstand the
fundamental aeroelastic behaviour of the active morphing cawibgr The esultsof the devebped
structural modetoupled withthequasisteady andnsteady aerodynamic modake compared to show
the different dynamic behaviour and aeroelastic response of the active camber morphingrnwing.

addition, the free vibrationresponses investigated to show an immediate understanding of how the
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morphingcamber behaves under different dynamic conditidtisally, recognising thathe compliant
segmentanfunctionas a flap to change the aerodynamic l@@edbackcontrol methods usedto
stabilisethe morphing aircraft by using tfmpliant segmenfThe esultsshow thatthe compliant

cambewing can bestabilisal by using theompliantsegment.
2.Devel opmeme Stfructural Model

The morphing camber model shown in FRyconsists of two chord segmentse front segment is a
non-morphing D spar anthe rear segment is diologically inspired compliant structure. Thear
segment iglamped to theon-morphing D spar that can be consideiigtl. The rotation of the tendon
spooling pulleycauss the tendons to morph the trailing edge upward or downward and produces a

continuous change of camber.

Tendon Bending Beam Trailing Edge
Spooling Pulley  Stringers Spine Strip
- k I3 s oy :“l\‘?=’1>f~ <.\\
5 8- P ——
Non-morphing Spar EMC Skin Tendons

Figure 2. Schematic of the morphing camber moj®dl].

The current derivatiowonsiderstwo cambersegments of equal spaasshown in Fig3. The front
segment is a nemorphing D spabased ormsymmetric, uncambered NACA 00&2rofoil whichhas
beenextensivelyanalysedor its two-dimensional aeroelastic behaviour. It is assumed thatittgehas
supportstiffnessQ andQ in the vertical(heave)and rotation(pitch) directions, respectivelElastic
beam theory is used to describe the dynamic behaviour efathbersegmentsCM is the centre of

mass of theigid segmenandEA is theelasticaxis

Figure 3. Aerofoil schematic defining the two segment camber.



Itisimportantto propely define the angle of attackand theplungedistanceQof the EA perpendicular
to the flow.The flow velocity”Y is in the & direction and’Qis positive upwarslin the & direction as

shown in Fig3. Forces due to gravity are considered negligible and are thus exéladdtie analysis.

The overall kinetic energy is obtained by considering each segment separately. The kinetic energy is
calculated by integrating thgroduct of local mass angtlocity square@crosghe wing. The resulting

expression for the kinetic energy of the rigid d&eito”Y, is

"y g "R e Qe L T RQAM| T QMR " 00
(1)
Q9 4 a0

Falhel

where'Oand& arethemoment of inertia and mass of the rigid part, respectively.

The kinetic energy due to the camber morphing, gattis calculated fromthe velocites in the
chordwise and thickness directions, whazkdetermined with respect to a fixed coordinate sysiedn

as
(W) | 0 )

W QU | w i )

wherew is second order anchay be neglectedi is the distance betweé@ 6and'Y ‘Cand wis

coordinate of the unit massf camber morphing paralong chordlinefrom "Y'O The transverse

deformation of the morphing segmeit, is approximated by
0 (H’b %o, %o , E %o, (4)

where%o %60 8 %o arethebasis functionsnd, h 8, Sarethegeneralised displacementhe basis
functions are conveniently given by modelling the flexible section as an-Betaoulli beam. The
basis functions are then tineass normalisedantileverbeam modes witfiour boundary conditions
(BCs): two from the clamped end ibfe morphing camber, and two from the free end of the morphing

camber These BCs argiven by

O 0 T T (5a)
v do O do ™ (5b)
where0  dendes theéth order derivative ob respect tay for'Q pltho8.

The kinetic energy of thitexible aerofoil *Y, is expressed as
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Y "8 Qo 8'Q %, | ® 1 Qo 6)

where, %o” QW p.

The kinetic energy of theholeaerofoil “Y cannow be expressed asfully discrete system

o, v " p, . P. —~ p " . >
Y Y Y —-a Q =170 YQ - , Q o, W,
c c c (7)
where & a L7000 "ol QY o . "Oow i Qe ®
L 860 Q cand® L Gow 1 Qw

The terms in the potential energy come from the deformation of the rigid aerofoil and from the camber
morphing part with respect to the undeforneedfiguration. The contributions to the potential energy
from the former and latter sources are denotetYbgnd™Y , respectively. Botfly and™Y follow well-

known results from the literature and total potential enérgg

Y Y 'y (8)

Thecontributions to thg@otential energy of the systemssuming three beam modes are modedlied,
then

pP. . p.
Y —-0Q -vu
C C | 9

~ P
Y - 1
c ] (10

wherg isthe@h ordematural frequencies of thmorphing segment

Assuming thestiffness arises from the heave and pitch springs, and the beam model of the camber, then

the totalpotential energys

v Poo Po P
C ! (11)

Y =-QQ =-1Q
q S

The appliedaerodynamidorce cannot be derived from a scalar potenéial hence the equations of

motion are derived usintpe Lagranged 6 A | e egbatiang

—— — — 0 (12)



withQ plefed andy "G IK A} ") 1K .

Thus, tre equations ofmotion of the morphing cambare

Cole @ 1,0 (133)
a  YQ @, U] 0 (13b)
a Q vy », 0VLQ O (130)

whered ,0 and0 denote the aerodynamic generalised fartae dynamicalequationdake the

form

0 Y LS I |

Y & 10 m m 0 1Q
The elements of the mass and stiffness matrices are functions of the physical and geometrical properties
of the system and are fultgpresentedy Ly« AEA G EH |, |k o W Mo 4

OB ® ,+ OO & and kstheidentity matrix. The forces on the modal coordinates due

(14)

C C-l_?

to the aerodynamics are givenlby _ %0 Q (and is considered in more detail next.

3.Aerodynamic Model

Quasisteady and fully unsteady aerodynamic models are considered to represent aerodynamic loads.
A sketch of the configuration is shown in Fig. 3; the configuration is similar to model presented in [31],

except that the rigid control surface is replacedh® morphing segment.

A. Quasi-Steady Aerodynamic Model
A stall model is introduced into the quateady aerodynamic approach to repreiemaerodynamic

loads[47]. Thus,the lift and pitching moment are given by

N 7. ”, ) 7 o R 'Q o 7, )
b ” “(A) Q w (A)| ” “(A) Y| ” (A)‘Y | — -0 W J_
Y q Y (15a)
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0 ""0® O ® O —| -0 ® " W0V
v (15b)
” 'Q:) “ TY ’Q O-(I) (b | pn (I)u TY o
| &Y c &Y c Y

where” is density of aif ®is thesemilength of rigid segmentYis the relevantefererceareaand™Y

is the flow speedFurthernore Fig. 3 shows that the morphing segment providadditional
aerodynamic load,e. lift and pitching moment) and0 , in Egs.(15). By conventionthe
aerodynamic load provided by the morphing segment is simulated here as a cantilever beam in axial
flow and only consideing the noncirculatory pressure, i.&/0 0 . Then, the corresponding

aerodynamic load andd are determineds
0 Yo oo AT-@ o (16a)
0 Yo afo AT-O0 1 Qw (16b)

where—is the slope of the morphing segment,ti.ejT @andit varies along the morphing part.

Recalling Eqgs.14), the corresponding generalized force of filemode camow be determineds
0 YO oo % @Qcw 0 6D % 0 AT-Mo 17

The small deflections of theorphing segmertreate a transverse velocity and thus a velocity potential.
Thus, based oraeerdoil theory [29,48] the nonrcirculatory pressure according tbe linearised

Bernoulli equation is

I 'T0 —— " Yc¢co a1 0 .10
0 G ¢ 00 0 — Y —. (18
o wd o T 0 T ow
Ois time.The full aeroelastic equations of motion are of the form
=< la F"Yra p"Yqyanm 19

damping, structural stiffness, and aerodynamic stiffness matrices respecaiatlyare generalised
coordinatesAlthough general viscous damping could be ugethe exanples proportionalstructural
dampingis assumed, whickxpresses the damping matrix as a linear combination of the mass and
stiffness matricesStructural damping is notoriously difficult to model, and proportional damping is a
simple approach used totiaduce structural damping to the important modes contributing to flutter.
Thus,

_ A _ L
F - (20)
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where- , — are real scalars.

B. UnsteadyAerodynamic Model
The pressure difference, according to Theodorsen, is divided into circulatory preésuaned(non

circulatory pressure)( ) [29]. Hence,

Yoo 0 0 (21)
The small deflections of thenorphing segmentreate a transverse velocity and a velocity potential.
Thus, based oanerofoiltheory[48,49] the circulatory pressure is created due to vortex shedding at the
trailing edge of thenorphing segmentAccording to Kelvin's theorem, vorticity has to be conserved in
an inviscid flow for a given topology. Thewe€, to conserve the total vorticity, if there is a vorticity
distribution at the wake of thaorphing segmenit should be balanced by a bound vorticity distribution
in the morphing segmenwith opposite strength. This creates a circulatory velocity potential whose
finite variation at the trailing edge is governed thg KuttaZhukovskii condition[49]. Thus, the

circulatory pressure is given by

\

5 P .Y — 113 “r"Q Ay 6 ’?'Q
0 ., 0o P cwp (22)

1
<
—a
PLN )
1
J—
Cc

whered Q is the Theodorsen functian

Y 0 Q
6Q ~ — (23)
D QO MM 70

where’O  Q is then-th Hankel function of the second kind.

The corresponding aerodynamic Isail and0 , can now be determinagsing Eq. (19).

The unsteady aerodynamic load produced bya#refoilcan be described §0],

O 0 ® Y ¢ rYRER | — -0 @ s

”n |
U —
Y ¢ Y (24a)
0
« ¥ T \ 5 v (I) v o . .
0 ” l‘w w w Q w Q)l T| ” “(A) Y E(A) o |
” nQ’b n '?’Y o TQ ’Q (6) 5 N | i‘) (24b)
T Y | 'rY c W W .;.Y

whereQ ®j c® pjT.

Then, the full aeroelastic equations of motion are of the form
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s 7 g om (25)
where here themass, damping and stiffness matricgambine the aerodynamic and structural

contributions and=- are generalised coordinates

T v (26)

whereo aretheadditional aerodynamic DOFas definedn the Appendix. Theaerodynamic stiffness

matricesarealsopresented ithe Appendix.

4 Numeri calanmdlrdaul bs

The test case considered for numerical validation is the Fish Bone Active Camber presented by Woods
et al [34,51] The properties of the morphing wing are listed in Tabded theeparameters are used

in the following numerical simulation.

Table 1. Aerodynamic and structural properties of the morplaiegfoil

Parameter | Value | Units
Rigid camber segment
Chord, 0.254 m
Mass of rigid parté 3.3843 kg/m
Centre ofgravity, ® 0.0264 m
Elastic axis 0.0635 m
Moment ofinertia,"O 0.0135 kg n?
Proportional damping constant 0.012 1/s
Proportional damping constant 0.0015 s
Pitch stiffness,;Q 94.37 Nm/rad
Plunge stiffnessQ 2844.4 N/m
Morphing camber segment
Length,a 0.25¢c m
Young'smodubls, O 72e9 Pa
Thickness of morphing cambsping 0 le-3 m
Density,” 2700 kg/m?
Air parameters
Density,” | 1.225 | kg/m?

A. Eigenvalueevolution

The section presents thesultingaeroelastic eigenvaluesmdthe first three natural frequency of the
morphing segmerdre consideredMost aeroelastic systems show unstaddaviourwith increasing
flow velocity. In this section, the stability condition of taerofoil system is examined using a linear
eigenvalue angkis. The homogenous form of the system of Bd) (nay be linearized bgeglecing
the nonlinear excitations terms. The resulting linear homogenous system of egqisati@ms easily
transferred to statepace form as

12



(27)
wheret is the state vector defined by
A
A (28)
3 is the constant dynamic systenatrix
LS
Tl 1 n (29

andz is the selectedumber ofmode shapes @f , Lt isthestiffness matriceand Lis the identity matrix.

Forlinear dynamic system#jeresponse of Eq27) is asymptotically exponentially stable in the sense
of Lyapunovif and only if all of theeigenvalues of; havenegative real partJhe root locus plot of

these eigenvalues can easily characterize thédistacondition of the linear system.

3 50F . /' ;
a asi-Stez ’ ’
@ . Quasi-Steady (b) Quasi-Steady , ,
’ steady |l | T Unsteady ’ ’
V2N e Unsteady v b , ,
’ i Xperiment by ’
5t ’ Experiment by 25k s , s
4 ¢ G. Dimitriadis et al. D. Tang et al. 4 ’
’ ’
~ —_ ’
2 2 ,
5 OF S o !
[} s )
22 & j
!
g
S5F ;I
0/
S S ’
.
~,
-10E . . . | i | ‘ N | |
10 20 30 40 50 0 10 20 30 40 50

U o (m/s) U o (m/s)

Figure 4. Thereal parts of the eigenvaluawith respect tdY (solid or dashdottedis stabledashed line
indicates a shift from stable ®unstablg. The threshold value 6% is identified as the flutter velocity(a) 2
DOF modelwith pitch and plung¢s2] (b) atwo dimensionapanel modef49].

Given that the current aeroelastic model for a ritgdible camber configuration is relatively
complicatedthe results fotwo cases fronthe literature[49,52] a classic 2DOF model anda panel
model, arggivenin Fig.4 and compared witestablishedesultsfrom theliterature Figure4 shows the
results of a DOF system with pitch and plunge andveo dimensional paneghodelusing the same
system parametees thosdrom the literatureThe maximum airspesdor a stable response for the
pitch and plunge modarel8m/s (Quasisteady) and 30m/s (Unsteadyhichwasobserved at 26.7m/s
from theexperimentas showrin Fig. 4(a). Figure4(b) shows that the critical fluttespeed®f the two
dimensional panel are 23m/s (Quatady) and 40m/s (Unsteady), compated®9.5 m/sin the

literature While theagreemenbetween the proposed model angberiment s n 6 t ,itdoegshowvc t

13



roughly similar result&nd can giveraluablepredicts. Therefordt is confidenceto usethis analysis

for initial considerations of aeroelastimodelof a cambemorphing wing

We now consider the aeroelastic response of the compliant morphing strubtnass &scaling of the

critical fluttervelocity [29,48] given by

(30)

If the thickness of the panéicreass, thenthe critical velocitywill alsoincrease By considering
different freestreanaelocities™Y , the critical flutter velocity can bdeterminedrom theunsteady and
guaststeady models. The importance of the aerodynamic model used can be appreciated by the dramatic
differences otheflutter speeddn addition the structural naturélequendesof the compliant structure

modelled as uniform beam¢can be obtained as

. uOT i
-| ” (‘ﬁ] a (31)

Thereforeg it is apparent that a shorter chord compliant structurebeaffectivein delaying flutter.
Based orthesolution verificationof thetwo baseline mods|the eigenvaluesvolution method is used
to analyséhecritical velocity of the morphing camber model under different aerodynamis Uiy
Eq. (14).
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Figure 5. Thereal parts of the eigenvaluewith respect tdY for the ative morphing camber modgolidis

stable dasheds unstablg. The threshold value that occurs™®f is identified as the flutter velocityMorphing

camber modefa) without structural damping under quatgady aerodynamic lodl) with structural damping

under quassteadyaerodynamic loa¢c) without structural damping under unsteady aerodynamic(taslith
structural dampinginder unsteady aerodynamic load

Figure 5 shows the evolution ofthe real parts of the eigenvaluewith respect tdY for the ative
morphingcamber modelThe o aerodynamic modeare considered as loads thestructure model
with or without structural dampindlhe dfferent aerodynamic modslgive similar critical flutter
speeds anthe unsteady aerodynamic model alwaledaysflutter. However, the dynamics with the

unsteady modedresignificantly more complexMoreover, structural dampirtgnds tadelay flutter as

the dampindhelps to dissipatenergyand hence istabilising
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Figure 6. Flutter speed and frequency for different ratitbmorphing segment)) (a) flutter speed (bJlutter

frequency The grey lines arthe natuml frequencie®f the structuramodel.

Figure6 illustrates the effects dheratio of morphing segmenip() on the flutter speednd frequency
The ratio ofmorphing segmenineans theroportionbetween the morphing segment to therd of
the aerofoil Note that the flutter speed is not a monotonic functiothefatio of morphing segment
and indeedhe quasisteady valuéhas a minimum. The ratio of morphisggment affects both the
structural and aerodynamic models. Moreover, the effect of the-sjgasly aerodynamic theory is to
reducethe variation in flutter speed. It is also seen that the egtaady aerodynamic theory gives an
overly conservative préction of flutter speed relative to the prediction of the fully unsteady
aerodynamic theoryin addition,the critical velocityin unsteady aerodynamic modetrease. The
reason is thafor a fixedchord length, increasintpe morphing segment careducethe inertia in the
pitch and plunge motion and therefore the corresponding frequency ircriémsee 6(b) shows the
flutter frequency fodifferent ratios of morphing segmerfor the unsteady aerodynamic modéhe
flutter frequencyincreaseswith increasing morphing segmerdtio and lies betweenthe pitch and

plungenaturalfrequency.
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Figure 7. Flutter speed and frequency for different stiffressg the morphing segmenty). (a) Flutter speed

(b) Flutter frequencyThegrey lines arghe natural frequency dhestructual model Solid lines indicatehe

3/4 chord morphing75p ratio of morphing segmerdnd daskdot lines indicatel/4 chord morphing 25k
ratio of morphing segment

Figure 7(a) illustrates the effects dlifferent stiffnes®s of the morphing segment) on the flutter
speed. Thetiffness othemorphing segment is changed by scaling its Young modulus. As the stiffness
of the morphing segment affects the structural mpaeproducs some interesting changés the
aeroelastiity. When the stiffness ofthe morphing segment reduced ¢ote , local flutter of the
morphing segment will occdor the3/4 chord morphingcase Figure 7(b) showsheflutter frequency

for thedifferent stiffnesgasesThere is a change theflutter modes inthe3/4chord morphing segment
case, as thiirst mode frequency ahorphing segment is betwethre naturafrequendesof pitch (12.3

Hz) and plunge (4.5 Hz), which is close to the first natural frequency of the morphing segment. The
correspondingperational deflectioshapegor the motionareshown in Fig. 8(b), whiclnepresers a

large response of the morphing segmeévienthe key natural frequencies are brought closer together
by the variation instiffness ofthe morphing segmenthe flutter speedecomedower and vice versa.
However, there is not aanalogougphenomenoiin the 1/4 chord morphing segment caswen ifthe
stiffness is less than 10% the baselineThusthe length ofthe morphing segment is more sensitive
thanits stiffness which confirmsthe results oEq. (31). Moreover, there is a different critical velocity

for 3/4 chord morphing segment casmnother casesandthe 100% stiffnessaseis the samas the

75% ratio of morphing segmemesult shownn Fig. 6. It is known that the length dhe morphing
segment can reduce the inertia in the pitch and plunge motion and therefore the corresponding frequency
is increasedFurthermore, when keeping the same morphing segment letegtfeasing the stiffness

of morphing segment can reduce its rigidity and the corresponding frequency is decBiased.
compaing Fig. 8(b) andFig. §d) showsthat the reduced rigidity of morphing segment can lead to
corresponding increased motiontbe morphing segmentSincethe motion of morphing segment is

coupled with pitch and plunge by recalling eq. (14), therefore the critical velocitglsalthangeThe
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results in Fig. 6 and7 provide a parametric studat is usefuin the designof the compiant segment

for morphing camber.

(a)

Figure 8. Mode shapeat the flutter speeda) 1/4 chord morphing segmentith 10%relative stiffnesgb) 3/4
chord morphing segmentith 10%relative stiffnesgc) 1/4 chord morphing segment wittd0% relative
stiffness(d) 3/4 chord morphing segmentith 100% relative stiffness

Figure8 shows the correspondingone shapes of the solutidor different casesand highlightghat
the characteristcof the morphing segment can influence #tability of the aerofoil. When the
morphing segmeriiecomes more compligrihehigh response of morphing part can leadthgtability
of the wholeaerofoil Moreovertheflutter frequencyn Fig. 7(b) givessimilarresults that thetructural
naturalfrequencyof the morphing segmeiie. its stiffnessgandeterminethe flutter frequencyif the

rigidity of morphing segment is small.

B. Free vibration analysis

The system parameters to be used in the following numerical investigations are given in Table 1.
investigate the accuracy of the present analytical solutions, tHe@OE eerdoil system with
characteristics given in Table 1 is considered first. The initial conditions for the systassanedto

be a small perturbatioof | v Jresultingin thetime response shown in Figk.By comparing lhe
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