
1 

 
 

Aeroelastic Model and Analysis of an Active Camber Morphing 

Wing 

Jiaying Zhang1,2, Alexander D. Shaw2, Chen Wang3, Huaiyuan Gu2, Mohammadreza 

Amoozgar4, Michael I. Friswell2 and Benjamin K.S. Woods5 

1
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China 

2
College of Engineering, Swansea University, Swansea SA2 8PP, United Kingdom 

3
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China 

4
School of Computing and Engineering, University of Huddersfield, HD1 3DH, United Kingdom 

5
Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom 

 

E-mail: jiaying.zhang@buaa.edu.cn 

 

Abstract: Morphing aircraft structures usually introduce greater compliance into aerodynamic sections, 

and therefore will affect the aeroelasticity with the potential risk of increased flutter. A low-fidelity 

model of an active camber morphing wing and its aeroelastic model are developed in order to investigate 

the potential critical speed by exploiting its chord-wise dimension and flexibility . Such a model may be 

used for conceptual design, where low fidelity models are used to explore and optimise a wide range of 

configurations. The morphing camber concept is implemented using a continuous representation of a 

two-segment structure with a rigid segment and a deformable part. The aeroelastic model is developed 

based on both steady and unsteady aerodynamic models, so that different parameters can be easily 

modified to examine changes in the flutter solutions. Of particular interest are the ratio of the morphing 

segment length to the chord, and its relative stiffness, as such morphing camber is potential operated 

using the deformable part as a flap. By comparing the results of the quasi-steady and unsteady 

aerodynamic models, it is shown that the quasi-steady aerodynamic model gives a more conservative 

prediction of the flutter speed. In addition, responses in phase space are simulated to show the 

fundamental aeroelastic behaviour of the morphing camber wing. It is also shown that the active 

compliant segment can be used to stabilise the morphing aircraft by using feedback control. This paper 

provides a system-level insight through mathematical modelling, parameter analysis and feedback 

control into dynamics applications of morphing camber. 
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Nomenclature: 

 pitch angle  i th natural frequency of the morphing  

segment 

‒ȟ‒ proportional damping constants  ” density of morphing camber spine 

ὦ semi-length of the rigid segment   ὸ thickness of morphing camber spine 

ὧ chord   ύ transverse displacement of the 

morphing segment 

Ὤ plunge displacement at elastic axis  ὼ position on the morphing segment 

along the chordline 

Ὅ moment of inertia of the rigid segment  ὰ length of the morphing camber spine 

Ὧ pitch stiffness of the rigid segment  ὃ cross sectional area of the morphing 

segment 

Ὧ plunge stiffness of the rigid segment  Ὁ Young's modulus of the morphing 

camber spine 

ά  mass of rigid part  Ὕ kinetic energy of the morphing 

segment 

ὶ distance between elastic axis and rigid 

segment trailing edge 

 Ὗ strain energy of the morphing segment 

Ὕ kinetic energy of the rigid segment  ”  air density 

Ὗ strain energy of the rigid segment  Ὗ  flow speed 

ὼ  distance between elastic axis and 

centre of gravity 

 CM centre of mass of the rigid segment 

ὼ distance between elastic axis and 

leading edge 

 EA elastic axis 

 frequency parameter of the morphing 

segment 

 ὖ circulatory pressure 

— slope of the morphing segment  ὖ  non-circulatory pressure 

‚ generalised displacements of the 

morphing segment 

 RE rigid segment trail edge 

‰ basis functions of the morphing 

segment 
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1. Introduction 

Advances in the development of smart actuators and compliant structures have led to widespread 

interest in morphing wings [1]. The aircraft system can therefore integrate morphing concepts to allow 

shape changes of the structure, and thus adapt its aerodynamic properties to suit changing mission 

requirements. Morphing aircraft concepts are showing the potential to significantly reduce the mass and 

energy consumption, and improve flight performance, compared to traditional aircraft structures, and 

hence they are receiving widespread interest across the aerospace industry [1ï8]. Traditional actuators, 

such as electromechanical servos, can be used as linear and rotary actuators, combined with mechanisms 

to provide a powerful tool for morphing [9]. Smart materials have been used as actuators to control 

wing panels [10,11], spanwise deflection [12] and trailing-edge flaps [13,14]. Many morphing wing 

structures are designed as compliant mechanisms to allow the desired deformation [15ï21]. A morphing 

leading-edge model was designed as a monolithic aluminium internal compliant mechanism to provide 

droop-nose morphing [18]. A compliant spar concept was presented and modelled to change the 

wingspan, which can enhance the operational performance and provide the roll control for a unmanned 

aerial vehicle (UAV) [19]. However, a potential consequence of wing morphing is that the wing 

structures become more flexible, and hence the dynamic properties of the wing and aerodynamic loads 

are affected. Therefore, the aeroelastic problems of morphing wings, as an interaction between the 

configuration-varying aerodynamics and the morphing structure, require investigation when 

dramatically changing their configurations during flight. To meet this challenge, effective theoretical 

formulations and computational methods are developed in this paper to model the coupled structural 

and aerodynamic behaviour of an active camber morphing wing. 

Significant research on the aeroelasticity of conventional wings already exists, but recently there has 

been increasing interest specifically in morphing wings. A real-time hybrid aeroelastic simulation 

platform for flexible wings and an efficient scheme to obtain the aerodynamic sensitivities for highly 

flexible aircraft have been studied [22,23].  A folding wing structure has been modelled theoretically 

using linear plate theory and its aeroelastic stability was studied by using a three-dimensional time 

domain vortex lattice aerodynamic model [24]. A further continuum model with exact solutions was 

developed to show the fundamental physics of folding-wing configurations [25,26]. The corresponding 

experiments were designed and the wind tunnel test results were compared with the predictions of a 

computational model for three folding wing configurations. The dynamical characteristics of a flexible 

membrane wing have been investigated and validated by using computational fluid dynamics 

simulations and experiments in a wind tunnel [27]. Moreover, a wide range of research in the aeroelastic 

analysis of 2D morphing aerofoil have been validated using  analytical aerodynamic models and CFD 

techniques which is extremely reliable and enables high-fidelity structural analysis. The dynamic 

properties of most compliant structures have been investigated in axial flow, such as a cantilevered plate 



4 

 
 

[28]. Similar to the cantilevered plate, interconnected beams in a fluid flow have been studied to show 

that the hinge position can affect the critical flutter speed [29]. A series of flexible aerofoils have been 

investigated by considering them as a beam structure in axial flow. Rayleighôs beam equation was used 

to model a flexible aerofoil, which describes the aerofoilôs chordwise dynamics [30]. The effect of 

chordwise flexibility of a compliant aerofoil was investigated numerically to show the dynamical 

stability [31,32]. An actuated two-dimensional membrane aerofoil has been investigated experimentally 

and numerically and suggests that membrane flexibility might decrease the drag and delay the stall. In 

[33], a 2D aerofoil section fitted with a flap-like deformable trailing edge actuator was investigated to 

determine flutter and divergence instability limits. The in-plane motion and deformation of the 2D 

structure were described by three degrees of freedom, namely heave translation, pitch rotation and flap 

deflection, and the results show that the undeflected flap aerofoil section has a higher stability limit than 

the rigid aerofoil.  

A wide range of research into the aeroelastic characteristics of 2D aerofoils has been conducted using 

both analytical aerodynamic models and CFD techniques, which are extremely reliable and enable high-

fidelity structural analysis. High-fidelity analysis is limited to realistic and detailed models that implies 

high costs. The primary aim of this paper is to investigate a quick and easy way to access the theoretical 

formulation of an active camber morphing wing and its aeroelastic model. A promising active camber 

morphing concept is considered, known as the Fish Bone Active Camber (FishBAC) [34], which uses 

a biologically inspired internal bending beam and elastomeric matrix composite as the skin surface, as 

shown in Fig. 1. The benefit of active camber is that it is capable of large camber changes and morphs 

the camber of an aerofoil smoothly and continuously, so that the deformable part of the aerofoil will 

function as a flap. Hence, ensuring the stability of the deformable part is essential in such morphing 

camber applications. In addition, morphing camber has been studied by strategically locating negative 

stiffness devices to tailor the required deployment forces and moments for passive energy balancing 

[35]. Therefore, the ratio of the morphing segment length to the chord and relative stiffness tailored by 

negative stiffness of the deformable part are the most important to check and test intuitively. In other 

words, the active compliant segment can be used to stabilise the morphing aircraft while ensuring the 

compliant segment is also stable. Furthermore, most of the works on flexible aerofoils have considered 

the whole aerofoil as a compliant structure [30ï32,36ï38] or attached a compliant structure to the 

trailing edge as an additional part [39,40], which cannot accurately represent the aeroelastic model of 

FishBAC. For this study, the active camber morphing wing is considered as a low fidelity model with 

two chordwise segments; a non-morphing D-spar towards the leading edge and a biologically inspired 

compliant structure towards the trailing edge. The assembled aerofoil is then used to create a dynamic 

model of that can be used to provide insight into the system level dynamics, including the prediction of 

flutter. The model may also be used to design and assess feedback control schemes to improve the 
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dynamic performance. This analysis is different from those previously reported, since few papers in the 

literature consider dynamic models of morphing concepts.  

The low fidelity model is firstly considered as a rigid-flexible structure and Hamiltonôs principle is used 

to develop the dynamic model based on flexible multi-body dynamics theory [41ï44]. A traditional 

linear structural model is developed by neglecting the structural nonlinearity and using orthogonal 

structural mode shapes as a basis for the deformation of the flexible part.  

   

Figure 1. Active camber morphing wing. (a) Morphing wing in the undeformed state. (b) Morphing wing in the 

deformed state [45]. 

The aeroelastic model based on the active camber morphing wing is then investigated by again dividing 

the aerofoil into a rigid segment and a morphing segment, respectively. Two linear aerodynamic models 

are considered: quasi-steady and fully unsteady. The aerodynamic load provided by the rigid segment 

is considered as a transitional 2 degree-of-freedom (DOF) stall model and the aerodynamic load 

provided by the morphing segment is simulated as a compliant structure in an axial flow. Moreover, by 

considering the varying unsteady aerodynamic load characteristics with frequency, a model reduction 

method based on singular value decomposition has been used to analyse the unsteady aeroelastic 

problem [46]. 

Based on the theoretical formulation and its aeroelastic model, the eigenvalue evolution is then analysed 

to show unstable behaviour of the morphing wing with increasing free stream velocity. Two known 

cases from the literature [34,37] are used for validation, a classic 2 DOF model and a panel model. Then, 

since the goal of the FishBAC concept is to change the flight condition by operating the compliant 

segment, the compliant segment should enable a more stable system than a rigid airfoil, since control 

may be provided by the FishBAC acting a flap. Therefore, the relative length and stiffness of the 

morphing segment is then varied to change the flutter solutions, which can help to understand the 

fundamental aeroelastic behaviour of the active morphing camber wing. The results of the developed 

structural model coupled with the quasi-steady and unsteady aerodynamic models are compared to show 

the different dynamic behaviour and aeroelastic response of the active camber morphing wing. In 

addition, the free vibration response is investigated to show an immediate understanding of how the 
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morphing camber behaves under different dynamic conditions.  Finally, recognising that the compliant 

segment can function as a flap to change the aerodynamic load, a feedback control method is used to 

stabilise the morphing aircraft by using the compliant segment. The results show that the compliant 

camber wing can be stabilised by using the compliant segment.  

2. Development of the Structural Model  

The morphing camber model shown in Fig. 2 consists of two chord segments; the front segment is a 

non-morphing D spar and the rear segment is a biologically inspired compliant structure. The rear 

segment is clamped to the non-morphing D spar that can be considered rigid.  The rotation of the tendon 

spooling pulley causes the tendons to morph the trailing edge upward or downward and produces a 

continuous change of camber. 

 

Figure 2. Schematic of the morphing camber model [34]. 

The current derivation considers two camber segments of equal span, as shown in Fig.3. The front 

segment is a non-morphing D spar based on a symmetric, uncambered NACA 0012 aerofoil, which has 

been extensively analysed for its two-dimensional aeroelastic behaviour. It is assumed that the wing has 

support stiffness Ὧ and Ὧ  in the vertical (heave) and rotation (pitch) directions, respectively. Elastic 

beam theory is used to describe the dynamic behaviour of the camber segments. CM is the centre of 

mass of the rigid segment and EA is the elastic axis.  

 

Figure 3. Aerofoil schematic defining the two segment camber.  
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It is important to properly define the angle of attack  and the plunge distance Ὤ of the EA perpendicular 

to the flow. The flow velocity Ὗ  is in the ὢ direction, and Ὤ is positive upwards in the ὣ direction, as 

shown in Fig. 3. Forces due to gravity are considered negligible and are thus excluded from the analysis.  

The overall kinetic energy is obtained by considering each segment separately. The kinetic energy is 

calculated by integrating the product of local mass and velocity squared across the wing. The resulting 

expression for the kinetic energy of the rigid aerofoil , Ὕ, is 

 

Ὕ
ρ

ς
”ὃὬ ὼ Ὠὼ

ρ

ς
”ὃὬὨὼ  ”ὃὼὨὼ ςὬ ”ὃὼὨὼ

ρ

ς
άὬ

ρ

ς
Ὅ άὼ Ὤ 

(1) 

where Ὅ and ά  are the moment of inertia and mass of the rigid part, respectively. 

The kinetic energy due to the camber morphing part, Ὕ, is calculated from the velocities in the 

chordwise and thickness directions, which are determined with respect to a fixed coordinate system ὢὣ 

as 

 ὠ ύ (2) 

 ὠ Ὤ ύ ὼ ὶ (3) 

where ὠ is second order and may be neglected, ὶ is the distance between Ὁὃ and ὙὉ and ὼ is 

coordinate of the unit mass of camber morphing part along chordline from ὙὉ. The transverse 

deformation of the morphing segment, ύ, is approximated by  

 ύὼȟὸ ‰‚ ‰‚ Ễ ‰‚ (4) 

where ‰ȟ‰ȟȣ‰ are the basis functions and ‚ȟ‚ȟȣ‚Ȣ are the generalised displacements. The basis 

functions are conveniently given by modelling the flexible section as an Euler-Bernoulli beam. The 

basis functions are then the mass normalised cantilever beam modes with four boundary conditions 

(BCs): two from the clamped end of the morphing camber, and two from the free end of the morphing 

camber. These BCs are given by  

 ύπȟὸ ύ πȟὸ π (5a) 

 ύ ὰȟὸ ὉὍύ ὰȟὸ π (5b) 

where ύ  denotes the Ὥth order derivative of ύ respect to ὼ, for Ὥ ρȟςȟσȣ.  

The kinetic energy of the flexible aerofoil, Ὕ, is expressed as 
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 Ὕ
ρ

ς
”ὃ ὠ Ὠὼ

ρ

ς
”ὃὬ ‰‚ ὼ ὶ Ὠὼ (6) 

where ᷿ ‰”ὃ‰Ὠὼ ρ . 

The kinetic energy of the whole aerofoil, Ὕ, can now be expressed as a fully discrete system, 

 Ὕ Ὕ Ὕ
ρ

ς
ά Ὤ

ρ

ς
Ὅ ὛὬ

ρ

ς
‚ Ὤ ὥ‚  ὦ‚ (7) 

where ά ά ᷿”ὃὨὼ, Ὅ Ὅ ᷿”ὃὼ ὶ Ὠὼ, Ὓ άὼ ᷿”ὃὼ ὶὨὼ, ὥ 

᷿”ὃ‰Ὠὼ and ὦ ᷿”ὃ‰ ὼ ὶὨὼ.  

The terms in the potential energy come from the deformation of the rigid aerofoil and from the camber 

morphing part with respect to the undeformed configuration. The contributions to the potential energy 

from the former and latter sources are denoted by Ὗ and Ὗ, respectively. Both Ὗ and Ὗ follow well-

known results from the literature and total potential energy Ὗ is 

 Ὗ Ὗ Ὗ (8) 

The contributions to the potential energy of the system, assuming three beam modes are modelled, are 

then  

 Ὗ
ρ

ς
ὑὬ

ρ

ς
ὑ  (9) 

 Ὗ
ρ

ς
(10) ‚ 

where .is the Ὥth order natural frequencies of the morphing segment  

Assuming the stiffness arises from the heave and pitch springs, and the beam model of the camber, then 

the total potential energy is 

 Ὗ
ρ

ς
ὯὬ

ρ

ς
Ὧ

ρ

ς
(11) ‚ 

The applied aerodynamic force cannot be derived from a scalar potential, and hence the equations of 

motion are derived using the Lagrange-dôAlembert equations, 

 
Ὠ

Ὠὸ

Ὕ

ή

Ὕ

ή

Ὗ

ή
ὗ (12) 
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with Ὦ ρȟςȟȢȢὲ and ή ὬȟȟⱩȟή ὬȟȟⱩ. 

Thus, the equations of motion of the morphing camber are  

 ‚ ὦ Ὤὥ ‚ ὗ  (13a) 

 Ὅ ὛὬ ὦ‚ ὑ ὗ  (13b) 

 ά Ὤ Ὓ ὥ‚ ὑὬ ὗ  (13c) 

where ὗ , ὗ  and ὗ  denote the aerodynamic generalised forces. The dynamical equations take the 

form 

 

╘ ╫╣ ╪╣

╫ Ὅ Ὓ
╪ Ὓ ά

Ⱪ

Ὤ

╚ⱩⱩ π π

π ὑ π
π π ὑ

Ⱪ

Ὤ

╠◌
ὗ
ὗ

 (14) 

The elements of the mass and stiffness matrices are functions of the physical and geometrical properties 

of the system and are fully represented by ╚ⱩⱩ ÄÉÁÇȟȟỄȟ , ╠◌  ὗ ȟὗ ȟȣὗ ,  ╫

 ὦȟὦȟȣὦ , ╪  ὥȟὥȟȣὥ  and ╘ is the identity matrix. The forces on the modal coordinates due 

to the aerodynamics are given by ὗ  ᷿ ‰ὗ Ὠὼ, and is considered in more detail next. 

 

3. Aerodynamic Model  

Quasi-steady and fully unsteady aerodynamic models are considered to represent aerodynamic loads. 

A sketch of the configuration is shown in Fig. 3; the configuration is similar to model presented in [31], 

except that the rigid control surface is replaced by the morphing segment. 

 

A.  Quasi-Steady Aerodynamic Model 

A stall model is introduced into the quasi-steady aerodynamic approach to represent the aerodynamic 

loads [47]. Thus, the lift and pitching moment are given by 

 
ὒ ”“ὦ Ὤ ὼ ὦ ”“ὦὟ  ”ὧ“Ὗ 

Ὤ

Ὗ

σ

ς
ὦ ὼ



Ὗ

ὒ  

(15a) 
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ὓ ”“ὦ ὼ ὦ Ὤ ὼ ὦ
”“ὦ

ψ


σ

ς
ὦ ὼ ”“ὦὟ 

”Ὡὧ“Ὗ 
Ὤ

Ὗ

σ

ς
ὦ ὼ



Ὗ

ρ

ς
”ὦ“Ὗ  ὓ  

(15b) 

where ” is density of air, ὦ is the semi-length of rigid segment, Ὓ is the relevant reference area and Ὗ  

is the flow speed. Furthermore, Fig. 3 shows that the morphing segment provides additional 

aerodynamic load, i.e. lift and pitching moment, ὒ  and ὓ , in Eqs. (15). By convention, the 

aerodynamic load provided by the morphing segment is simulated here as a cantilever beam in axial 

flow and only considering the non-circulatory pressure, i.e. Ўὖ ὖ . Then, the corresponding 

aerodynamic load ὒ  and ὓ  are determined as  

 ὒ ЎὖὼȟὸÃÏÓ—Ὠὼ (16a) 

 ὓ ЎὖὼȟὸÃÏÓ—ὼ ὶὨὼ (16b) 

where — is the slope of the morphing segment, i.e. ύὼϳ , and it varies along the morphing part. 

Recalling Eqs. (14), the corresponding generalized force of the Ὥth mode can now be determined as  

 ὗ Ўὖὼȟὸ‰ ὼὨὼ ὖ ὼȟὸ‰ ὼÃÏÓ—Ὠὼ (17) 

The small deflections of the morphing segment create a transverse velocity and thus a velocity potential. 

Thus, based on aerofoil theory [29,48], the non-circulatory pressure according to the linearised 

Bernoulli equation is  

 ὖ ὼȟὸ ς”
ύ

ὸ
ὼὰ ὼ

”Ὗ ςὼ ὰ

ὼὰ ὼ

ύ

ὸ
Ὗ
ύ

ὼ
 (18) 

ὸ is time. The full aeroelastic equations of motion are of the form 

 ═ ς”║▲ ╒ ”Ὗ ╓▲ ╔ ”Ὗ ╕▲ π (19) 

where ═ȟ║ȟ╒ȟ╓ȟ╔ȟ╕ are the structural inertia, aerodynamic inertia, structural damping, aerodynamic 

damping, structural stiffness, and aerodynamic stiffness matrices respectively, and ▲ are generalised 

coordinates. Although general viscous damping could be used, in the examples, proportional structural 

damping is assumed, which expresses the damping matrix as a linear combination of the mass and 

stiffness matrices. Structural damping is notoriously difficult to model, and proportional damping is a 

simple approach used to introduce structural damping to the important modes contributing to flutter. 

Thus,    

 
╒ ‒╜ ‒╚ 

(20) 
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where ‒, ‒ are real scalars. 

 

B. Unsteady Aerodynamic Model  

The pressure difference, according to Theodorsen, is divided into circulatory pressure (ὖ) and non-

circulatory pressure (ὖ ) [29]. Hence, 

 Ўὖ ὖ ὖ (21) 

The small deflections of the morphing segment create a transverse velocity and a velocity potential. 

Thus, based on aerofoil theory [48,49], the circulatory pressure is created due to vortex shedding at the 

trailing edge of the morphing segment. According to Kelvin's theorem, vorticity has to be conserved in 

an inviscid flow for a given topology. Therefore, to conserve the total vorticity, if there is a vorticity 

distribution at the wake of the morphing segment, it should be balanced by a bound vorticity distribution 

in the morphing segment with opposite strength. This creates a circulatory velocity potential whose 

finite variation at the trailing edge is governed by the Kutta-Zhukovskii condition [49]. Thus, the 

circulatory pressure is given by 

 ὖ
”Ὗ

ὼὰ ὼ

ύ

ὸ
Ὗ
ύ

ὼ
ὰςὅὯ ρ ςὼρ ὅὯ  (22) 

where ὅὯ is the Theodorsen function.  

 ὅὯ
Ὄ Ὧ

Ὄ Ὧ ὭὌ Ὧ
 (23) 

where Ὄ Ὧ is the n-th Hankel function of the second kind. 

The corresponding aerodynamic loads, ὒ  and ὓ , can now be determined using Eq. (19). 

The unsteady aerodynamic load produced by the aerofoil can be described as [50],  

 
ὒ ”“ὦ Ὤ ὼ ὦ Ὗ  ς”“Ὗ ὦὅὯ 

Ὤ

Ὗ

σ

ς
ὦ ὼ



Ὗ

ὒ  

(24a) 

 

ὓ ”“ὦ ὼ ὦ Ὤ ὼ ὦ
”“ὦ

ψ
 ”“ὦὟ

σ

ς
ὦ ὼ 

τ”Ὡὦ“Ὗ ὅὯ 
Ὤ

Ὗ

σ

ς
ὦ ὼ



Ὗ
ὓ  

(24b) 

where Ὡ ὼ ςὦϳ ρτϳ . 

Then, the full aeroelastic equations of motion are of the form 
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╜◄╤ ╒◄╤ ╚◄╤ π 

(25) 

where here the mass, damping and stiffness matrices combine the aerodynamic and structural 

contributions, and ╤ are generalised coordinates, 

 
╤ ▲ȟ○ 

(26) 

where ○ are the additional aerodynamic DOFs, as defined in the Appendix. The aerodynamic stiffness 

matrices are also presented in the Appendix. 

 

4. Numerical validation and results  

The test case considered for numerical validation is the Fish Bone Active Camber presented by Woods 

et al. [34,51]. The properties of the morphing wing are listed in Table 1 and these parameters are used 

in the following numerical simulation. 

Table 1. Aerodynamic and structural properties of the morphing aerofoil.  

Parameter Value Units 

 Rigid camber segment 

Chord, ὧ 0.254 m 

Mass of rigid part, ά  3.3843 kg/m 

Centre of gravity, ὼ  0.0264 m 

Elastic axis, ὼ 0.0635 m 

Moment of inertia, Ὅ 0.0135 kg m2 

Proportional damping constant, ‒ 0.012 1/s 

Proportional damping constant, ‒ 0.0015 s 

Pitch stiffness, Ὧ 94.37 Nm/rad 

Plunge stiffness, Ὧ 2844.4 N/m 

 Morphing camber segment 

Length, ὰ 0.25c m 

Young's modulus, Ὁ 72e9 Pa 

Thickness of morphing camber spine, ὸ 1e-3 m 

Density, ” 2700 kg/m³ 

Air parameters 

Density, ”  1.225 kg/m³ 

 

A.  Eigenvalue evolution   

The section presents the resulting aeroelastic eigenvalues and the first three natural frequency of the 

morphing segment are considered. Most aeroelastic systems show unstable behaviour with increasing 

flow velocity. In this section, the stability condition of the aerofoil system is examined using a linear 

eigenvalue analysis. The homogenous form of the system of Eq. (14) may be linearized by neglecting 

the nonlinear excitations terms. The resulting linear homogenous system of equations is then easily 

transferred to state-space form as 
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Ɫ ╗Ɫ 

(27) 

where Ɫ is the state vector defined by  

 Ɫ
▲

▲
 (28) 

╗ is the constant dynamic system matrix 

 ╗
π ╘

╜ ╚ π
 (29) 

and ὲ is the selected number of mode shapes of ♠, ╚ is the stiffness matrices and ╘ is the identity matrix. 

For linear dynamic systems, the response of Eq. (27) is asymptotically exponentially stable in the sense 

of Lyapunov if and only if all of the eigenvalues of ╗ have negative real parts. The root locus plot of 

these eigenvalues can easily characterize the stability condition of the linear system. 

  

Figure 4. The real parts of the eigenvalue ‗ with respect to Ὗ  (solid or dash-dotted is stable, dashed line 

indicates a shift from stable to is unstable). The threshold value of Ὗ  is identified as the flutter velocity.  (a) 2 

DOF model with pitch and plunge [52] (b) a two dimensional panel model [49]. 

 

Given that the current aeroelastic model for a rigid-flexible camber configuration is relatively 

complicated, the results for two cases from the literature [49,52], a classic 2 DOF model and a panel 

model, are given in Fig. 4 and compared with established results from the literature. Figure 4 shows the 

results of a 2 DOF system with pitch and plunge and a two dimensional panel model using the same 

system parameters as those from the literature. The maximum airspeeds for a stable response for the 

pitch and plunge model are 18m/s (Quasi-steady) and 30m/s (Unsteady), which was observed at 26.7m/s 

from the experiment, as shown in Fig. 4(a). Figure 4(b) shows that the critical flutter speeds of the two 

dimensional panel are 23m/s (Quasi-steady) and 40m/s (Unsteady), compared to 29.5 m/s in the 

literature.  While the agreement between the proposed model and experiment isnôt perfect, it does show 
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roughly similar results and can give valuable predicts. Therefore, it is confidence to use this analysis 

for initial considerations of aeroelastic model of a camber morphing wing. 

We now consider the aeroelastic response of the compliant morphing structure. There is a scaling of the 

critical flutter velocity [29,48] given by 

 Ὗͯ
Ὁὸ

”ὰ
 (30) 

If the thickness of the panel increases, then the critical velocity will  also increase. By considering 

different freestream velocities Ὗ , the critical flutter velocity can be determined from the unsteady and 

quasi-steady models. The importance of the aerodynamic model used can be appreciated by the dramatic 

differences of the flutter speeds. In addition, the structural natural frequencies of the compliant structure, 

modelled as a uniform beam, can be obtained as  

 
ὉὍ

”ὃὰ
ὰ (31) 

Therefore, it is apparent that a shorter chord compliant structure can be effective in delaying flutter. 

Based on the solution verification of the two baseline models, the eigenvalue evolution method is used 

to analyse the critical velocity of the morphing camber model under different aerodynamic loads using 

Eq. (14).  
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Figure 5. The real parts of the eigenvalue ‗ with respect to Ὗ  for the active morphing camber model (solid is 

stable, dashed is unstable). The threshold value that occurs of Ὗ  is identified as the flutter velocity.  Morphing 

camber model (a) without structural damping under quasi-steady aerodynamic load (b) with structural damping 

under quasi-steady aerodynamic load (c) without structural damping under unsteady aerodynamic load (d) with 

structural damping under unsteady aerodynamic load. 

 

Figure 5 shows the evolution of the real parts of the eigenvalue ‗ with respect to Ὗ  for the active 

morphing camber model. The two aerodynamic models are considered as loads for the structure model 

with or without structural damping. The different aerodynamic models give similar critical flutter 

speeds and the unsteady aerodynamic model always delays flutter. However, the dynamics with the 

unsteady model are significantly more complex. Moreover, structural damping tends to delay flutter as 

the damping helps to dissipate energy and hence is stabilising. 
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Figure 6. Flutter speed and frequency for different ratios of morphing segment (Ϸ) (a) flutter speed (b) flutter 

frequency. The grey lines are the natural frequencies of the structural model. 

 

Figure 6 illustrates the effects of the ratio of morphing segment (Ϸ) on the flutter speed and frequency. 

The ratio of morphing segment means the proportion between the morphing segment to the chord of 

the aerofoil. Note that the flutter speed is not a monotonic function of the ratio of morphing segment 

and indeed the quasi-steady value has a minimum. The ratio of morphing segment affects both the 

structural and aerodynamic models. Moreover, the effect of the quasi-steady aerodynamic theory is to 

reduce the variation in flutter speed. It is also seen that the quasi-steady aerodynamic theory gives an 

overly conservative prediction of flutter speed relative to the prediction of the fully unsteady 

aerodynamic theory. In addition, the critical velocity in unsteady aerodynamic model increases. The 

reason is that for a fixed chord length, increasing the morphing segment can reduce the inertia in the 

pitch and plunge motion and therefore the corresponding frequency increases. Figure 6(b) shows the 

flutter frequency for different ratios of morphing segment for the unsteady aerodynamic model. The 

flutter frequency increases with increasing morphing segment ratio and lies between the pitch and 

plunge natural frequency.  
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Figure 7. Flutter speed and frequency for different stiffnesses of the morphing segment (Ϸ). (a) Flutter speed 

(b) Flutter frequency. The grey lines are the natural frequency of the structural model. Solid lines indicate the 

3/4 chord morphing (75Ϸ ratio of morphing segment) and dash-dot lines indicate 1/4 chord morphing (25Ϸ 

ratio of morphing segment). 

 

Figure 7(a) illustrates the effects of different stiffnesses of the morphing segment (Ϸ) on the flutter 

speed. The stiffness of the morphing segment is changed by scaling its Young modulus. As the stiffness 

of the morphing segment affects the structural model, it produces some interesting changes in the 

aeroelasticity. When the stiffness of the morphing segment reduced to φπϷ, local flutter of the 

morphing segment will occur for the 3/4 chord morphing case. Figure 7(b) shows the flutter frequency 

for the different stiffness cases. There is a change in the flutter modes in the 3/4 chord morphing segment 

case, as the first mode frequency of morphing segment is between the natural frequencies of pitch (12.3 

Hz) and plunge (4.5 Hz), which is close to the first natural frequency of the morphing segment. The 

corresponding operational deflection shapes for the motion are shown in Fig. 8(b), which represents a 

large response of the morphing segment. When the key natural frequencies are brought closer together 

by the variation in stiffness of the morphing segment, the flutter speed becomes lower and vice versa. 

However, there is not an analogous phenomenon in the 1/4 chord morphing segment case, even if the 

stiffness is less than 10% of the baseline. Thus the length of the morphing segment is more sensitive 

than its stiffness, which confirms the results of Eq. (31). Moreover, there is a different critical velocity 

for 3/4 chord morphing segment case than other cases, and the 100% stiffness case is the same as the 

75% ratio of morphing segment result shown in Fig. 6. It is known that the length of the morphing 

segment can reduce the inertia in the pitch and plunge motion and therefore the corresponding frequency 

is increased. Furthermore, when keeping the same morphing segment length, decreasing the stiffness 

of morphing segment can reduce its rigidity and the corresponding frequency is decreased. By 

comparing Fig. 8(b) and Fig. 8(d) shows that the reduced rigidity of morphing segment can lead to 

corresponding increased motion of the morphing segment. Since the motion of morphing segment is 

coupled with pitch and plunge by recalling eq. (14), therefore the critical velocity will also change. The 
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results in Figs. 6 and 7 provide a parametric study that is useful in the design of the compliant segment 

for morphing camber. 

 

 

Figure 8. Mode shapes at the flutter speed. (a) 1/4 chord morphing segment with 10% relative stiffness (b) 3/4 

chord morphing segment with 10% relative stiffness (c) 1/4 chord morphing segment with 100% relative 

stiffness (d) 3/4 chord morphing segment with 100% relative stiffness. 

 

Figure 8 shows the corresponding mode shapes of the solution for different cases, and highlights that 

the characteristics of the morphing segment can influence the stability of the aerofoil. When the 

morphing segment becomes more compliant, the high response of morphing part can lead to instability 

of the whole aerofoil. Moreover, the flutter frequency in Fig. 7(b) gives similar results that the structural 

natural frequency of the morphing segment (i.e. its stiffness) can determine the flutter frequency if the 

rigidity of morphing segment is small.  

 

B. Free vibration analysis 

The system parameters to be used in the following numerical investigations are given in Table 1. To 

investigate the accuracy of the present analytical solutions, the 2 DOF aerofoil  system with 

characteristics given in Table 1 is considered first. The initial conditions for the system are assumed to 

be a small perturbation of  υЈ, resulting in the time response shown in Figs. 9. By comparing the 


